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Effect of AC electric field on thermal convective 
instability in a dielectric fluid saturated porous 

medium 
Deepa K Nair, Potluri Geetha Vani and I. S. Shivakumara 

Abstract— The effect of vertical AC electric field on the onset of convection in a horizontal layer of a dielectric fluid saturated Brinkman 
porous medium heated from below is investigated. The lower and upper boundaries of the fluid are considered to be rigid and isothermal. As 
observed in the classical dielectric fluid layer, oscillatory convection is found to occur provided the Prandtl number is less than unity.  
Therefore it is not a preferred mode of instability because the Prandtl number is greater than unity for dielectric fluids for poorly conducting 
liquids, so only the steady onset is considered for all the three types of boundary conditions.  The eigenvalue problem is solved numerically 
using the Galerkin method. The effects of Darcy number, the ratio of viscosities, are analyzed on the stability of the system. The necessary 
conditions for the oscillatory instability to occur are independent of AC electric Rayleigh number. The effect of increasing AC electric 
Rayleigh number is to enhance the heat transfer and to hasten the onset of convection. The rigid boundaries offer more stabilizing effect on 
the system than free-free and rigid-free boundaries. Thus the foregoing study throws light on the control of electrohydrodynamic instability by 
a proper choice of velocity boundary conditions and AC electric field. 

. 

Index Terms—AC electric field,dielectric fluid,porous medium,convection, isothermal boundaries, Darcy number, Rayleigh number. 
———————————————————— 

1. Introduction 
In view of understanding possible control of convection in 
liquid dielectrics and a control of heat and mass transfer in 
high-voltage devices by electric field, several studies have 
been carried out in the past to assess the effect of AC or 
DC electric field on natural convection in a horizontal 
dielectric fluid layer. Buoyancy driven convection in a fluid-
saturated porous medium has been a subject of 
considerable interest amongst researchers because of its 
natural occurrence and also in many applications such as 
drying processes, thermal insulation, radioactive waste 
management, transpiration cooling, geophysical systems, 
and contaminant transport in groundwater, ceramic 
processing, solid matrix compact exchangers to mention a 
few. The developments which have been taken place in 
this field over the years are well documented by Nield and 
Bejan (1). 
 
 

 

 

The effect of rotation on the onset of thermal convection in 
a horizontal fluid layer is well known for ordinary viscous 
fluids. Palm and Tyvand have (4) studied the linear 
stability problem of thermal convection in a rotating porous 
layer. Using Brinkman model, Jou and Liaw (5) have 
studied thermal convection in aporous medium subject to 
transient heating rotation. Qin and Kaloni (6) have studied 
the nonlinear stability of rotating porous layer by including 
the convective inertia term in the Brinkman model and 
they have shown that the effect of permeability is to 
stabilize the system.  Recently, Shivakumara et al. (2) 
have discussed in detail the effect of vertical AC electric 
field on the onset of electrthermalconvection in a layer of 
dielectric fluid-saturated Darcy- Brinkman porous medium 
for various types of velocity boundary conditions, while the 
effect of Coriolis force due to rotation on such an 
instability problem has been investigated by Shivakumara 
et al. (3). 
The intent of the present study is to investigate the effect 
of AC electric field on the criterion for the onset of 
electrothermalconvection in a dielectric fluid saturated 
Brinkman porous layer. In the present study three different 
types of boundary conditions are considered, namely (i) 
rigid–rigid (ii) free-free and (iii) lower rigid and upper free. 
The similarities and difference between these types of 
boundaries on the stability characteristics of the system 
are highlighted. The eigenvalue problem is solved exactly 
for free-free isothermal boundaries, while numerically 
using the Galerkin method for other boundary conditions.   
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2. Mathematical formulation  

We consider an infinite horizontal layer of 
dielectric fluid saturated porous medium of thickness d . 
The lower surface at 0z = , and the upper surface at z d=

are maintained at constant temperatures 0 2
TT ∆

+  and

0 2
TT ∆

− , respectively. In addition, a vertical AC electric field 

is also imposed across the layer; the lower and upper 

surfaces are kept at an alternating potential 0 2
VV ∆

−  and,

0 2
VV ∆

+  respectively. The relevant basic equations under 

the Boussinesq approximations are: 

0q∇ ⋅ =
                  (1) 

( )0 0
2

2
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  ∂ ∂
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(2)                                                                                                                        

( ) 2TA q T T
t

κ∂
+ ⋅∇ = ∇

∂
                                                (3)

( )( )0 01 T Tρ ρ α= − −                                        (4) 

Since there is no free charge, the relevant Maxwell 
equations are   

0E∇× =


, ( ). 0Eε∇ =


(5a,b)In view of (5.5a), E


  can be 

expressed as E V= −∇


    (6)    
 Where V  is the root mean square value of the 
electric potential. The dielectric constant is assumed to be 
a linear function of temperature in the form                                                                                          

( )( )0 01 T Tε ε γ= − − .                                    (7) 

Where γ (>0) is the  thermal expansion coefficient of 
dielectric constant and is assumed to be small.  
 
To study the stability of the basic state, we superimpose 
infinitesimally small perturbations on the basic state in the 
form 

, , , , ,b b b b bq q P P P E E E T T T ρ ρ ρ ε ε ε′ ′ ′ ′ ′ ′= = + = + = + = + = +
     

                                                                                     (8) 
Where are the perturbed quantities 
over their equilibrium counterparts. Substituting (8) into  
(1)-(7), linearizing the equations, eliminating the pressure 
from the momentum equation by operating curl twice and 
retaining the vertical component and non-dimensionalizing 
the resulting equations and performing linear stability 
analysis we get 

( )

( ) ( )

2 2 2 2 2

22 2 1 2 2

t ea eaD a W R a R a R a D
Pr

D a W Da D a W

ω

−

 − + Θ + Θ − Φ =  
 Λ − − −  

 

( )2 2A D a Wω − − Θ =                         (9,10) 

( )2 2D a D− Φ = Θ   (11) 

The boundary conditions are 
2 0W D W D= = Θ = Φ = (12)                                                                                  

on the stress-free boundary and 
0W DW= = Θ = Φ = (13)   

on the rigid boundary.  
3. Both boundaries free isothermal 

 
Let us assume the solution in the following form such 

that they satisfy the respective boundary conditions: 
( ) ( ) ( )1 2 3sin , sin , cosW A z A z A zπ π π= Θ = Φ = .        (14) 

where 1 3A A−  are constants. Substituting (14) into (9) - 
(13), we find the condition for the existence of a non-trivial 
eigenvalue is 
 

2
4 1 2 2 2

2

2

( )
Pr

1 0 0
0

t e eaDa R R a R a

A

ωδδ δ π

ω δ
π δ

−  
 Λ + + − + −  

 
− + =                (15)   

 Expanding the above determinant yields an expression 
for the thermal Rayleigh number in the form 
 

( )4 2 2
2 1

4 2Pr
t

t

A RR Da
a a

δ δ ω ω δδ −
+  = Λ + + − 

 
                         (16)   

To examine the stability of the system, the real part of ω   
is set to zero and take iω ω=  in (16) we get  

6 2 22
2 24

1
Prt ea i

G A aR R i N
a a

δ δ ω ω
δ

 
= − − + 

  
                            (17)                      

where 4 1 2G Daδ δ−= Λ +  
4 6

4 4 Pr
N AG

a a
δ δ

= +                                                          (18)                                                                     

Since tR  is a physical quantity, it must be real and hence 
either 0iω =  or 0N =  in (17).  

4. Stationary convection 

Enforcement of 0iω =  in (17) gives the condition for the 
occurrence of stationary convection. The corresponding 
expression for tR  is 

( )4 2 1 2

2 2t ea

Da aR R
a

δ δ

δ

−Λ +
= − .         (19)                                                    
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To find the critical value of tR  , (19) is differentiated with 
respect to 2a  and equated to zero to get a polynomial in

2( )ca  in the form 
 

( ) ( ) ( ) ( ) ( )
( )

6 5 4 3 22 2 2 4 2 6 2 8 2

10 2 12

7 6 15 20 15

42 2 7 0

c c c c c

ea c

a a a a a

R a

π π π π

π π

 Λ + + + + +  
 Λ − + Λ = 

     (20)  (5.33) 

It is observed that the critical wave number varies with 
,eaR L and 1Da- . It is interesting to check (17) and (19) for 

the existing results in the literature under some limiting 
cases. Equations (17) and (19) coincide with the 
expressions given Lapwood in the case of Newtonian fluid 
through a porous medium 

and is given by 

  
 
                                                     (21) 

We note that tR  attains its critical value tcR  at ca a=  where 

2 1
tcR a Daπ −=   (5.35) 

and 
ca π=  (5.36) 

5. Oscillatory convection 

The onset of oscillatory convection corresponds to 
0( 0)iN ω= ≠  in (17). which gives Prandtl number less than 

unity. Therefore it is not a preferred mode of instability 
because the Prandtl number is greater than unity for 
dielectric fluids (for example, 480Pr =  for corn oil, 100 for 
silicone oil and 10000 for caster oil).  

 
5.1 Both boundaries rigid  
 Since the occurrence of oscillatory convection is 
not a preferred mode of instability for dielectric fluids, we 
set ω = 0 in (9) - (11). As in the case of free isothermal 
boundaries, an exact solution is not possible for the rigid 
boundaries and the Galerkin method is adopted to solve 
the resulting eigenvalue problem. Accordingly, the 
variables are written in a series of basis functions as   

, , ,i i i i i iW AW B C= Θ = Θ Φ = Φ∑ ∑ ∑                             (22)  (5.39) 

 
where ,i iA B  and iC  are constants. The basis functions  and

iΦ  will be represented by the power series satisfying the 
boundary conditions. Substituting  (22) into (9)–(11) (after 
noting ω = 0), multiplying the resulting momentum 

equation by ( )jW z ,energy equation by ( )j zΘ , electric 
potential equation by ( )j zΦ ; performing the integration by 
parts with respect to z between z = 0 and z = 1 and using 
the boundary conditions, leads to the following system of 
linear homogeneous algebraic equations: 
 

0

0

0

ji i ji i ji i

ji i ji i

ji i ji i

E A F B G C

H A I B

J B K D

+ + =

+ =

+ =

                                                  (23)   

 
where, 
 

2 2 2 42ji j i j i j iE D W D W a DW DW a W W=< Λ + + >  
1 2, ,j i j iDa DW DW a W W−+ 〈 〉 + 〈 〉 2 2

ji t j i e j iF R a W R a W= − < Θ + Θ > , 
2

ji ea j iG R a W D=< Φ > , ji j iH W=< Θ >  
2

ji j i j iI D D a= − < Θ Θ + Θ Θ > ,  

ji j iJ D= − < Φ Θ > , 2
ji j i j iK D D a= − < Φ Φ + Φ Φ >  

 

Here the inner product is defined as 
1

1 2 1 2
0

f f f f dz< >= ∫ .  

(24) 
 
The following three types of velocity boundary 
combinations are considered foepr discussion:  
(i)  both boundaries rigid 

0W DW D= = Θ = Φ =   at 0,1z =                       (25)  
(ii)  both boundaries free 

2 0W D W D= = Θ = Φ =   at 0,1z =                         (26)   
(iii)  lower boundary rigid and upper boundary free 

0W DW= = Θ = Φ =      at  0z =  
2 0W D W D= = Θ = Φ =      at  1z =                        (27)   

The boundary conditions allow us to choose the trial 
functions as follows 
(i) Rigid –rigid boundaries 

1 2 32i i i
iW z z z+ + += − +  

1i i
i z z +Θ = −    

1i i
iZ z z += −                                                            (28) 

(ii) Free-free boundaries 
3 22i i i

iW z z z+ += − +  
1i i

i z z +Θ = − (29) 
1 2 32i i i

iZ z z z+ + += − +  
(iii)Lower rigid and upper free boundaries 

3 1 22 3 5i i i
iW z z z+ + += + −  

1i i
i z z +Θ = −                             (30) 

1 2 32i i i
iZ z z z+ + += − +  

 It may be noted that the above polynomial trial functions 
automatically satisfy the respective boundary conditions. 

The thermal Rayleigh number tR  or the AC electric 
Rayleigh number eacR  is taken as the eigenvalue. The 
critical values of tR  or eaR   as the case may be are 
computed as a function of wave number a  for assigned 
values of other parameters.  The results presented here 
are for 5i j= =  the order at which the convergence is 
achieved, in general.  
 

( )21 2 2

2t

Da a
R

a
π− +

=
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6. Results and Discussion 

 
             The effect of vertical AC electric field on the 
criterion for the onset of thermal convection in a layer of 
dielectric fluid is investigated. The bounding surfaces of 
the fluid layer are considered to be either rigid-rigid or 
free-free or lower rigid and upper one free. The analytical 
study carried out for isothermal free-free boundaries 
reveals that the necessary conditions for the occurrence of 
oscillatory convection are independent of vertical AC 
electric field. Since the Prandtl number is much greater 
than unity for dielectric fluids, occurring of oscillatory 
convection as a preferred mode of instability is discarded. 
Under the circumstances, the study has been restricted to 
stationary convection. For the remaining boundary 
combinations, the eigenvalue problem is solved 
numerically using the Galerkin technique.  

 Figure 1 displays the variation of critical thermal Rayleigh number t cR
as a function of eaR  when 1Λ =  and

1 1Da− =  for free-f                                       
convection.  From the figure it is also seen that the rigid-
rigid boundaries are more stabilizing compared to free-
free boundaries due to the increased suppression of 
disturbances in the case of rigid boundaries. The variation 
of corresponding critical wave number ca  is shown in 
Figure 2.   It is observed that, the critical wave number 
increases with increasing eaR  considerably in the case of 
free-free boundaries, while the variation is found to be 
insignificant in the case of rigid-rigid and rigid-free 
boundaries.  
It is a known fact that the effect of fluid viscosity, in 
general, is to resist continued motion of the fluid by 
dissipating the kinetic energy of the fluid. In Figure 3 the 
variation of t cR  is exhibited as a function of eaR  for 
different values of Λ . It is observed that t cR  is an 
increasing function of Λ  indicating its effect is to stabilize 
the fluid motion against electrothermalconvection. Thus 
the effect of increasing Λ  is to delay the onset of 
electrothermalconvection. Besides, the effect of increasing 
Λ  is to decrease the critical wave number and hence its 
effect is to increase the size of convection cells (see 
Fig.4). The effect of increase in 1Da− is to increase the 
critical thermal Rayleigh number and thus has a stabilizing 
effect on the system and the same is evident from Figure 
5. In addition, the effect of increasing  1Da−  is to increase 
the critical wave number initially, while an opposite trend is 
noted once the value of eaR  exceeds certain value (Fig. 6).  

7. Conclusions 

The results of the foregoing study may be 
summarized as follows. The effect of AC electric field on 
the onset of convection in a dielectric fluid saturated 
porous media is analyzed with the object of understanding 
control of electrohydrodynamic instability for rigid-rigid, 
rigid-free and free-free boundaries. Analytical expression 
for the occurrence of steady and oscillatory convection is 
obtained for isothermal free-free boundaries. The 
necessary conditions for the oscillatory instability to occur 
are independent of AC electric Rayleigh number. The 
effect of increasing AC electric Rayleigh number is to 

enhance the heat transfer and to hasten the onset of 
convection. The rigid boundaries offer more stabilizing 
effect on the system than free-free and rigid-free 
boundaries. Thus the foregoing study throws light on the 
control of electrohy drodynamic instability by a proper 
choice of velocity boundary conditions and AC electric 
field. 
 
 

 
Fig 1: Variation of tcR  with eaR  when 1 1, 1Da− = Λ =    for 

free- free rigid-rigid & rigid-free boundaries. 
 

 
 
Fig 2: Variation of ca  with eaR  when 1 1, 1Da− = Λ =    for 

free- free rigid-rigid & rigid-free boundaries. 
 

 

 
Fig 3: Variation of tcR  with eaR  when 1 1, 1,3,5Da− = Λ =    

for free- free boundaries. 
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Fig 4: Variation of ca  with eaR  when 1 1, 1,3,5Da− = Λ =    
for free- free boundaries. 

 
 

 
 
Fig 5: Variation of tcR  with eaR  when 1 1,10,20, 1Da− = Λ =    for free- 
free boundaries. 
 
 
 

 
Fig 6:  Variation of ca  with eaR  when 1 1,10,20, 1Da− = Λ =    for free- 
free boundaries. 
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